Vectors and Vector Spaces

1.
Scalars and Vectors

Scalar:
Magnitude only ( e.g., Temperature,  Density,  Concentration )

Vector:
Magnitude + Direction  ( e.g., Gravity Force, Velocity )  v ,  EQ \o(v,\s\up10(()) 

a   =   b
if same direction and same length

Unit Vector:
|a| = 1

2.
Components of a Vector

We have two points P = ( 3, 1, 4 ) and Q = ( 1,  2, 4 )

the vector  EQ \o(PQ,\s\up10(-())   =  [ 2, 3, 0 ].

v  =  [ v1, v2, v3 ]  =  v1 i  +  v2 j  +  v3 k
where v​1, v2, and v3 are components of v.

The length of v in Rectangular Cartesian Coordinate (RCC) system is given by


|v| =    EQ \r( v12 + v22 + v32 ) 
e.g.,  EQ \o(PQ,\s\up10(-())  = - 2 i - 3 j  ,  |  EQ \o(PQ,\s\up10(-()) |  =   EQ \r(13 ) 
Note that in RCC systems, i, j, and k are perpendicular (orthogonal) to each other.

If  a  =  b  then  a1  =  b1,  a2  =  b2,  a3  =  b3.

3.
Addition and Multiplication

(1)
Definition

Addition
a + b
a = [a1, a2, a3]
;
b =  [ b1, b2, b3 ]

a + b = [a1 + b1 , a2 + b2 , a3 + b3 ]

Multiplication
 a     
where  is a scalar

a =   [ a1, a2, a3 ]

 a =  [ a1, a2, a3 ]
and
| a |  =  |  | | a |

(2)
Properties

Addition


a + b =   b + a


(u + v) + w = u + (v + w)



a + 0   =   a


a + (- a)   =   0


| a |  +  | b |  (  | a + b |

Multiplication



 ( a + b )   =    a  +   b


(  +  ) a   =    a  +   a



 (  a )   =   (   ) a   =     a


1 a   =   a


0 a   =   0


(  1 ) a   =    a
4.
Vector Spaces

(1) 
Definition

For vector space Rn  , 


a   =   [ a1 , a2 , a3 ,  . . . , an ]

;
b   =   [ b1 , b2 , b3 ,  . . . , bn ]

and
a + b  =  [ a1 + b1 , a2 + b2 , .  .  . , an + bn ]


 a   =   [ a1 , a2 , a3 ,  .  .  . , an ]

R3  :
a  =  [ a1 , a2 , a3 ]

(2)
Properties

Addition


a + b  =  b + a

( u + v ) + w  =  u + ( v + w )


a  +  0   =   a
Definition of 0

( a )  +  ( - a )   =   0
Definition of - a
Multiplication


 ( a + b )   =    a  +   b

(  +  ) a   =    a  +   a


 (  a )   =   (   ) a   =     a

1 a   =   a

(3)
Linear Independence and Dependence

Linear Combination

c1 a1  + c2 a2  + c3 a3  +  .  .  .  + cm am
e.g., [ - 5, 11 ] is a linear combination of [ 2 , 4 ] and [ 3 , - 1 ].
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Linear Independence
If the only solution of the equation


c1 a1  + c2 a2  + c3 a3  +  .  .  .  + cm am   =   0
is
c1  =  c2  =  c3  =  .  .  .  =   cm  =  0

then a1, a2, . . . , am are linearly independent.

Linear Dependence
If there exist m scalars c1 , c2, . . . , cm not all zero such that


c1 a1  + c2 a2  + c3 a3  +  .  .  .  + cm am   =   0
then a1, a2, . . . , am are linearly dependent.

[Example]
 i  =  [ 1 , 0 , 0 ]  ;
j  =  [ 0 , 1 , 0 ] ; 
k  =  [ 0 , 0 , 1 ]

(
i , j , and k are linearly independent.

[Example]
a  =  [ - 7 , 7 , 7 ] ;
b  =  [ - 1 , 2 , 4 ] ;
c  =  [ 5 , - 3 , 1 ]

Are a , b , c linearly dependent or independent?

Dimension n
The maximum number of linearly independent vectors is the dimension of the vector space.

e.g.,  v1, v2, . . . , vn  are linearly independent

and
v  =  c1 v1  +  c2 v2  +  .  .  .  +  cn vn
for every vector v in the vector space, then


[ v1, v2, . . . , vn ]

form a basis for the vector space.

[Exercise]
Show that [ 1 , 2 ] and [ - 1 , 1 ] form a basis for R2.

[Hint]

Need to prove two things:

(1)
[ 1 , 2 ] and [ - 1 , 1 ] are linearly independent.

(2)
Any vector [ x , y ] in R2 can be represented by the linear combinations of [ 1 , 2 ] and [ - 1 , 1 ].

5.
Inner Product (Dot Product, Scalar Product)

Definition

a•b   =   |a| |b| cos 
where  is the angle between a and b,  0 (  ( 
If a•b = 0, we have one of the following:  (i). a = 0,   (ii). b = 0,  (iii).  a ( b ( orthogonal or perpendicular to each other ).

[Example]
i•i  =  1
;
i•j  =  0
;
i•k  =  0



j•i  =  0
;
j•j  =  1
;
j•k  =  0



k•i  =  0
;
k•j  =  0
;
k•k  =  1

[Example]
a  =  a1 i  +  a2 j  +  a3 k
;
b  =  b1 i  +  b2 j  +  b3 k



a•b   =   a1 b1  +  a2 b2  +  a3 b3
[Exercise]
u  =  2 i  -  3 j  -  4k
;
v  =  - 3 i  +  j  - 2 k


u•v  =  ?

Properties

a•b   =   b•a

( a + b ) • c  =   a•c  +  b•c

(  a ) • b   =    ( a • b )


| a |   =    EQ \r( a•a ) 

cos   =   EQ \f(a•b,  |a||b|  ) 

| a•b |   (  |a||b|

Schwarz Inequality
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[Exercise]
Let v be a nonzero vector, then for any other nonzero vector u, show that


w   =   u     EQ \f(  (u•v) v  ,|v|2) 
is orthogonal to v.
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Projection – a vector
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Projection of a onto b  (a vector in the direction of b) :
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Unit vector in the direction of b   :   
 EQ \f(b, |b| ) 


[image: image6.wmf]p

=
[image: image7.wmf]±

|p| =   |a| cos    =    EQ \f(|a| cos g |b|, |b| )   =    EQ \f(a•b, |b| )   

=  component of a in the direction b.

(
  p   = 
[image: image8.wmf]p

=

b

b

  |a| cos   EQ \f(b, |b| )   =    EQ \f(a•b, |b| )  EQ \f(b, |b| ) 
[image: image9.wmf]·

=

·

ab

b

bb


[Exercise]
Let a  =  2 i  +  3 j  +  k  ,  b  =  i  +  2 j    6 k
Find the projection of a onto b.
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EXAMPLE 4

EXAMPLE 5

EXAMPLE 6

Multiplying (10) by |b|/|b| = 1, we have a«b in the numerator and thus

asb

i P= T

(b # 0).

If b is a unit vector, as it is often used for fixing a direction, then (11) simply gives
(12) p=a-b (bl = D.

Orthonormal basis

By definition, an orthonormal basis for 3-space is a basis {a, b, ¢} consisting of orthogonal unit vectors. It has
the great advantage that the determination of the coefficients in representations

v =la+ lsb + I3c (v a given vector)

is very simple. We claim that /; = aev, Iy = bev, I3 = cev. Indeed, this follows simply by taking the
inner products of the representation with a, b, ¢, respectively, and using the orthonormality of the basis,
aev = [jaea + [saeb + [gaec = [q, etc.

For example, the unit vectors i, j, k in (8), Sec. 8.1, associated with a Cartesian coordinate system form an
orthonormal basis, called the standard basis. 4

Orthogonal straight lines in the plane

Find the straight line L; through the point P: (1, 3) in the xy-plane and perpendicular to the straight line
Lo: x — 2y + 2 = 0; see Fig. 165.

Solution. The idea is to write a general straight line Ly: ajx + agy = c as aer = ¢ with a = [ay, ag] # 0
and r = [x, y], according to (2). Now the line L;* through the origin and parallel to L, is a«r = 0. Hence, by
Theorem 1, the vector a is perpendicular to r. Hence it is perpendicular to L;* and also to L, because L; and
Lq* are parallel. a is called a normal vector to L; (and to L;*).

Now a normal vector to the given line x — 2y + 2 = 0 is b = [1, —2]. Thus L, is perpendicular to Ly if
bea = a; — 2a5 = 0, for instance, if a = [2, 1]. Hence L, is given by 2x + y = c. It passes through P: (1, 3)
when2-1+3=c¢=35.

Answer: y = —2x + 5. Show that the point of intersection is (x, y) = (1.6, 1.8). <

Fig. 165. Example 5 Fig. 166. Normal vector to a plane

Normal vector to a plane
Find a unit vector perpendicular to the plane 4x + 2y + 4z = —7.

Solution. Using (2), we may write any plane in space as
(13) aer = ax + asy + agz =c¢

where a = [ay, ag, ag] # 0 and r = [x, y, z]. The unit vector in the direction of a is (Fig. 166)

1

n=-—a.
la|
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6.
Vector Product (Cross Product)  a ( b

[image: image12.png]Vector product




Definition
Magnitude:   |a ( b|   =   |a||b| sin 
Direction:
a ( b  (  a ,
a ( b  (  b ,  follows right-handed rule.
a ( b  =  0  if     EQ \b\lc\{( \a\al( a = 0, , b = 0, , a // b ) )
Properties

a ( 0  =  0 ( a   =   0

a ( b  =  - ( b ( a )     (not commutative!)

 ( a ( b )   =   (   a ) ( b 


a ( ( b + c )   =   a ( b  +  a ( c

( a + b ) ( c   =   a ( c  +  b ( c


( a ( b ) ( c   (   a ( ( b ( c )  (not associative! See page 417 for proof.)
Components in RCC

i ( i  =  0 

i ( j  =  k

i ( k  =  - j


j ( i  =  - k 

j ( j  =  0

j ( k  =  i


k ( i  =  j 

k ( j  =  - i

k ( k  =  0

and
a ( b  
=   ( a1 i + a2 j + a3 k ) ( ( b1 i + b2 j + b3 k )



=  a1 b1 i ( i  +  a1 b2 i ( j  +  .  .  .  



=  ( a2 b3 - a3 b2 ) i  +  ( a3 b1 - a1 b3 ) j  +  ( a1 b2 - a2 b1 ) k



=   EQ \b\bc\|( \a\co3\vs8\hs12( i, j, k, a1, a2, a3, b1, b2, b3 ) ) 
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EXAMPLE 1

Fig. 168. Right-handed triple of vectors Fig. 169. Right-handed screw
a b, v

Here we assume that the Cartesian coordinate system is right-handed (explanation below).
For a left-handed system each of these three components must be multiplied by —1.
Formula (2) is derived in Appendix 4.

Explanations. First, a right-handed triple of vectors a, b, v is one in which the vectors,
in the order given, assume the same sort of orientation as the thumb, index finger, and
middle finger of the right hand when these are held as shown in Fig. 168. We may also
say that if a is rotated into the direction of b through the angle « (< ), then v advances
in the same direction as a right-handed screw would if turned in the same way (Fig. 169).

Second, a Cartesian coordinate system is called right-handed if the corresponding unit
vectors i, j, k in the positive directions of the axes (see Sec. 8.1) form a right-handed
triple as in Fig. 170a. The system is called left-handed if the sense of k is reversed, as in
Fig. 170b. In applications, we prefer right-handed systems.

Vector product

For the vector productv =a X bofa=1[1, 1, OJlandb=[3, 0, O0]inright-handed coordinates we obtain
from (2)

v; =0, vy = 0, vg=1:-0—1-3= -3

(a) Right-handed (b) Left-handed

Fig. 170. The two types of Cartesian coordinate systems




[Example] Moment of a force 
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[image: image16.jpg]Fig. 172. Moment of a force
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Here, the vector m is called the moment vector of p about Q. Its magnitude is the moment of this force about point Q. If 
[image: image18.wmf]¹

m0

, its direction is that of the axis of the rotation about Q that p has the tendency to produce.

[Example] Velocity of a rotating body

[image: image19.jpg]Fig. 174. Rotation of a rigid body




The magnitude of 
[image: image20.wmf]ω

is equal to the angular velocity 
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of the rotation, i.e., the linear (tangential) speed of point P divided by its distance d from the axis of rotation.


[image: image22.wmf]     and     

vd

w

=´=

v

ωr



[image: image23.wmf]where,

           = tangential velocity vector

           = angular velocity vector

           = position vector

v

ω

r


7.
Scalar Triple Product: a • ( b ( c )   or  ( a b c )

[image: image24.png]bxc

Geometrical interpretation of a scalar triple product




Values of a • ( b ( c )


a • ( b ( c )   =    EQ \b\bc\|( \a\co3\vs8\hs12( a1, a2, a3, b1, b2, b3, c1, c2, c3) ) 
Geometric Meaning
Properties
(1)
a • ( b ( c )   =   ( a ( b ) • c

(2)
a • ( a ( b )   =   0
;
b • ( a ( b )  =  0

(3)
a • ( b ( c )  =  0  for  a ( 0, b ( 0, c ( 0 if and only if a, b, and c are coplanar.

8.
Some Important Identities


a ( ( b ( c )   =   ( a • c ) b  -  ( a • b ) c

( a ( b ) • (c ( d )   =    ( a • c ) ( b • d)  -   ( a • d ) ( b • c)



( a ( b ) ( (c ( d )   =   [ a • ( b ( d ) ] c  -   [ a • ( b ( c ) ] d
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